Dynare Summer School 2021
 Introduction to Dynare - exercise session 1
 June 21, 2021
 Michel Juillard

For these exercises, you will use the examples contained in Session1.zip.

Exercise 1: Stochastic model For this exercise, we use the small scale New Keynesian model from Sungbae An and Frank Schorfheide (2006) Bayesian Analysis of DSGE models. Federal Reseerve Bank of Philadelphia, WP No. 06-5, (available in papers/an_schorfheide_2006.pdf) and Edward Herbst and Frank Schorfheide (2016) Bayesian Estimation of DSGE models. Princeton University Press.
Look at these different representations of the model (refer to the original paper for the meaning of the variables and parameters):

1. Model A, the original nonlinear model contains the following equations:

$$
\begin{align*}
1= & \beta \mathbb{E}_{t}\left[\left(\frac{C_{t+1} / A_{t+1}}{C_{t} / A_{t}}\right)^{-\tau} \frac{A_{t}}{A_{t+1}} \frac{R_{t}}{\pi_{t+1}}\right] \tag{1}\\
1= & \phi\left(\pi_{t}-\pi\right)\left[\left(1-\frac{1}{2 \nu}\right) \pi_{t}+\frac{\pi}{2 \nu}\right] \\
& -\phi \beta \mathbb{E}_{t}\left[\left(\frac{C_{t+1} / A_{t+1}}{C_{t} / A_{t}}\right)^{-\tau} \frac{Y_{t+1} / A_{t+1}}{Y_{t} / A_{t}}\left(\pi_{t+1}-\pi\right) \pi_{t+1}\right] \tag{2}\\
& +\frac{1}{\nu}\left[1-\left(\frac{C_{t}}{A_{t}}\right)^{\tau}\right] \\
Y_{t}= & C_{t}+G_{t}+A C_{t} \tag{3}\\
A C_{t}= & \frac{\phi}{2}\left(\pi_{t}-\pi\right)^{2} Y_{t} \tag{4}\\
G_{t}= & \frac{g_{t}-1}{g_{t}} Y_{t} \tag{5}\\
R_{t}= & R_{t}^{\star 1-\rho_{R}} R_{t-1}^{\rho_{R}} e^{\epsilon_{R, t}} \tag{6}\\
R_{t}^{\star}= & r \pi^{\star}\left(\frac{\pi_{t}}{\pi^{\star}}\right)^{\psi_{1}}\left(\frac{Y_{t}}{Y_{t}^{\star}}\right)^{\psi_{2}} \tag{7}\\
\ln A_{t}= & \ln \gamma+\ln A_{t-1}+\ln z_{t} \tag{8}\\
\ln z_{t}= & \rho_{z} \ln z_{t-1}+\epsilon_{z, t} \tag{9}\\
\ln g_{t}= & \left(1-\rho_{g}\right) \ln g+\rho_{g} \ln g_{t-1}+\epsilon_{g, t} \tag{10}\\
Y_{t}^{\star}= & (1-\nu)^{\frac{1}{\tau}} A_{t} g_{t} \tag{11}
\end{align*}
$$

2. Model B is the stationary version of the model. It is obtained by removing the productivity trend from consumption, $c_{t}=C_{t} / A_{t}$, outptut, $y_{t}=Y_{t} / A_{t}$, and, natural output, $y_{t}^{\star}=Y_{t}^{\star} / A_{t}$. In addition, we substitute out G_{t} and $A C_{t}$:

$$
\begin{align*}
1= & \beta \mathbb{E}_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{-\tau} \frac{1}{\gamma z_{t+1}} \frac{R_{t}}{\pi_{t+1}}\right] \tag{12}\\
1= & \phi\left(\pi_{t}-\pi\right)\left[\left(1-\frac{1}{2 \nu}\right) \pi_{t}+\frac{\pi}{2 \nu}\right] \\
& -\phi \beta \mathbb{E}_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{-\tau} \frac{y_{t+1}}{y_{t}}\left(\pi_{t+1}-\pi\right) \pi_{t+1}\right] \tag{13}\\
& +\frac{1}{\nu}\left(1-c_{t}^{\tau}\right) \\
y_{t}= & c_{t}+\frac{g_{t}-1}{g_{t}} y_{t}+\frac{\phi}{2}\left(\pi_{t}-\pi\right)^{2} y_{t} \tag{14}\\
R_{t}= & R_{t}^{\star 1-\rho_{R}} R_{t-1}^{\rho_{R}} e^{\epsilon_{R, t}} \tag{15}\\
R_{t}^{\star}= & r \pi^{\star}\left(\frac{\pi_{t}}{\pi^{\star}}\right)^{\psi_{1}}\left(\frac{y_{t}}{y_{t}^{\star}}\right)^{\psi_{2}} \tag{16}\\
\ln z_{t}= & \rho_{z} \ln z_{t-1}+\epsilon_{z, t} \tag{17}\\
\ln g_{t}= & \left(1-\rho_{g}\right) \ln g+\rho_{g} \ln g_{t-1}+\epsilon_{g, t} \tag{18}\\
y_{t}^{\star}= & (1-\nu)^{\frac{1}{\tau}} g_{t} \tag{19}
\end{align*}
$$

3. Steady state of the stationary model is

$$
\begin{align*}
\pi & =\pi^{\star} \tag{20}\\
r & =\frac{\gamma}{\beta} \tag{21}\\
R & =r \pi^{\star} \tag{22}\\
c & =(1-\nu)^{\frac{1}{\tau}} \tag{23}\\
y^{\star} & =g c \tag{24}\\
y & =y^{\star} \tag{25}
\end{align*}
$$

4. Model C is obtained by using variables defined as ratio to the steady state value, $\hat{x}_{t}=\ln \left(\frac{x_{t}}{x}\right)$:

$$
\begin{align*}
1= & \mathbb{E}_{t}\left[e^{-\tau \hat{c}_{t+1}+\tau \hat{c}_{t}+\hat{R}_{t}-\hat{z}_{t+1}-\hat{\pi}_{t+1}}\right] \tag{26}\\
0= & \left(e^{\hat{\pi}_{t}}-1\right)\left[\left(1-\frac{1}{2 \nu}\right) e^{\hat{\pi}_{t}}+\frac{1}{2 \nu}\right] \\
& -\beta \mathbb{E}_{t}\left[\left(e^{\hat{\pi}_{t+1}}-1\right) e^{-\tau \hat{c}_{t}+\tau \hat{c}_{t}+\hat{y}_{t+1}-\hat{y}_{t}+\hat{\pi}_{t+1}}\right] \tag{27}\\
& +\frac{1-\nu}{\nu \phi \pi^{2}}\left(1-e^{\tau \hat{c}_{t}}\right) \\
e^{\hat{c}_{t}-\hat{y}_{t}}= & e^{-\hat{g}_{t}}-\frac{\phi \pi^{2} g}{2}\left(e^{\hat{\pi}_{t}}-1\right)^{2} \tag{28}\\
\hat{R}_{t}= & \rho_{R} \hat{R}_{t-1}+\left(1-\rho_{R}\right) \psi_{1} \hat{\pi}_{t} \tag{29}\\
& +\left(1-\rho_{R}\right) \psi_{2}\left(\hat{y}_{t}-\hat{g}_{t}\right)+\epsilon_{R, t} \\
\hat{g}_{t}= & \rho_{g} \hat{g}_{t-1}+\epsilon_{g, t} \tag{30}\\
\hat{z}_{t}= & \rho_{z} \hat{z}_{t-1}+\epsilon_{z, t} \tag{31}
\end{align*}
$$

5. Finally, model D is the log-linearized version of the original model

$$
\begin{align*}
\hat{y}_{t}= & \mathbb{E}_{t}\left[\hat{y}_{t+1}\right]-\frac{1}{\tau}\left(\hat{R}_{t}-\mathbb{E}_{t}[\hat{\pi}(+1)]-\mathbb{E}_{t}[\hat{z}(+1)]\right) \tag{32}\\
& +\hat{g}-\hat{g}(+1) \tag{33}\\
\pi_{t}= & \beta \mathbb{E}_{t}\left[\hat{\pi}_{t+1}\right]+\kappa\left(\hat{y}_{t}-\hat{g}_{t}\right) \tag{34}\\
\hat{R}_{t}= & \rho_{R} \hat{R}_{t-1}+\left(1-\rho_{R}\right)\left(\psi_{1} \hat{\pi}_{t}+\psi_{2}\left(\hat{y}_{t}-\hat{g}_{t}\right)\right)+\epsilon_{R, t} \tag{35}\\
\hat{g}_{t}= & \rho_{g} \hat{g}_{t-1}+\epsilon_{g, t} \tag{36}\\
\hat{z}_{t}= & \rho_{z} z_{t-1}+\epsilon_{z, t} \tag{37}
\end{align*}
$$

with

$$
\kappa=\tau \frac{1-\nu}{\nu \pi^{2} \phi}
$$

Questions:

1. Would model A and model B generate the same trajectories for the endogenous variables?
2. Would model B and model C generate the same trajectories for the endogenous variables?
3. Check the transformation of the first equation from its original form, equation (1), to its expression in terms of stationary variables, equation (12).
4. Model B is available in models/as/as1.mod. Fill in the missing equation and run as1.mod in Dynare.
5. Verify equation (22)
6. Check the transformation of equation (12) to equation (26)
7. Model C is implemented in models/as/as2.mod and a first order approximation is computed. Run it and compare the mean of the variables between as1.mod and as2.mod. Where is the difference coming from?
8. Model D is implemented in models/as/as3.mod. Run it and compare the results with as2.mod?

Exercise 3: Higher order approximations

1. In models/jermann98/jermann98.mod: change the value of the parameters for consumption habits and investment adjustment cost and observe the effect on the risk premium. Try second and third order approximation.

Exercise 4: Linearization

1. Compute the first order Taylor expansion of equation (26)
2. Compute the first order Taylor expansion of equation (28)
3. Combine the first order Taylor expansion of equations (26) and (28) to obtain equation (32)
