A matrix quadratic equation

Consider the equation

$$
\left(f_{y+} g_{y} g_{y}+f_{y_{0}} g_{y}+f_{y_{-}}\right) \hat{y}=0
$$

Two approaches

- The generalized Schur decomposition
- The cyclic reduction approach

Generalized Schur decomposition approach

Consider the structural state space representation:

$$
\left[\begin{array}{cc}
0 & f_{y_{+}} \\
l & 0
\end{array}\right]\left[\begin{array}{c}
l \\
g_{y}
\end{array}\right] g_{y} \hat{y}=\left[\begin{array}{cc}
-f_{y_{-}} & -f_{y_{0}} \\
0 & l
\end{array}\right]\left[\begin{array}{c}
l \\
g_{y}
\end{array}\right] \hat{y}
$$

or

$$
\left[\begin{array}{cc}
0 & f_{y_{+}} \\
l & 0
\end{array}\right]\left[\begin{array}{c}
y_{t}-\bar{y} \\
y_{t+1}-\bar{y}
\end{array}\right]=\left[\begin{array}{cc}
-f_{y-} & -f_{y_{0}} \\
0 & l
\end{array}\right]\left[\begin{array}{c}
y_{t-1}-\bar{y} \\
y_{t}-\bar{y}
\end{array}\right]
$$

Structural state space representation

$$
D x_{t+1}=E x_{t}
$$

with

$$
x_{t+1}=\left[\begin{array}{c}
y_{t}-\bar{y} \\
y_{t+1}-\bar{y}
\end{array}\right] \quad x_{t}=\left[\begin{array}{c}
y_{t-1}-\bar{y} \\
y_{t}-\bar{y}
\end{array}\right]
$$

- There are multiple solutions but we want a unique stable one.
- Need to discuss eigenvalues of this linear system.
- Problem when D is singular.

Real generalized Schur decomposition

Taking the real generalized Schur decomposition of the pencil $\langle E, D\rangle$:

$$
\begin{aligned}
& D=Q T Z \\
& E=Q S Z
\end{aligned}
$$

with T, upper triangular, S quasi-upper triangular, $Q^{\prime} Q=I$ and $Z^{\prime} Z=I$.

Generalized eigenvalues

λ_{i} solves

$$
\lambda_{i} D x_{i}=E x_{i}
$$

For diagonal blocks on S of dimension 1×1 :

- $T_{i i} \neq 0: \lambda_{i}=\frac{S_{i i}}{T_{i i}}$
- $T_{i i}=0, S_{i i}>0: \lambda_{i}=+\infty$
- $T_{i i}=0, S_{i i}<0: \lambda_{i}=-\infty$
- $T_{i i}=0, S_{i i}=0: \lambda_{i} \in \mathcal{C}$

A pair of complex eigenvalues

When a diagonal block of matrix S is a 2×2 matrix of the form

$$
\left[\begin{array}{cc}
S_{i i} & S_{i, i+1} \\
S_{i+1, i} & S_{i+1, i+1}
\end{array}\right],
$$

- the corresponding block of matrix T is a diagonal matrix,
- $\left(S_{i, i} T_{i+1, i+1}+S_{i+1, i+1} T_{i, i}\right)^{2}<-4 S_{i+1, i} S_{i+1, i} T_{i, i} T_{i+1, i+1}$,
- there is a pair of conjugate eigenvalues
$\lambda_{i}, \lambda_{i+1}=$
$\frac{S_{i i} T_{i+1, i+1}+S_{i+1, i+1} T_{i, i} \pm \sqrt{\left(S_{i, i} T_{i+1, i+1}-S_{i+1, i+1} T_{i, i}\right)^{2}+4 S_{i+1, i} S_{i+1, i} T_{i, i} T_{i+1, i+1}}}{2 T_{i, i} T_{i+1, i+1}}$

Applying the decomposition

$$
\begin{aligned}
D\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] g_{y} \hat{y} & =E\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] \hat{y} \\
{\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right] } & {\left[\begin{array}{c}
1 \\
g_{y}
\end{array}\right] g_{y} \hat{y} } \\
& =\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{c}
1 \\
g_{y}
\end{array}\right] \hat{y}
\end{aligned}
$$

Selecting the stable trajectory

To exclude explosive trajectories, one imposes

$$
\begin{aligned}
& Z_{21}+Z_{22} g_{y}=0 \\
& g_{y}=-Z_{22}^{-1} Z_{21}
\end{aligned}
$$

A unique stable trajectory exists if Z_{22} is non-singular: there are as many roots larger than one in modulus as there are forward-looking variables in the model (Blanchard and Kahn condition) and the rank condition is satisfied.

An alternative algorithm: Cyclic reduction

- Solving

$$
A_{0}+A_{1} X+A_{2} X^{2}
$$

- Iterate

$$
\begin{aligned}
& A_{0}^{(k+1)}=-A_{0}^{(k)}\left(A_{1}^{(k)}\right)^{-1} A_{0}^{(k)} \\
& A_{1}^{(k+1)}=A_{1}^{(k)}-A_{0}^{(k)}\left(A_{1}^{(k)}\right)^{-1} A_{2}^{(k)}-A_{2}^{(k)}\left(A_{1}^{(k)}\right)^{-1} A_{0}^{(k)}, \\
& A_{2}^{(k+1)}=-A_{2}^{(k)}\left(A_{1}^{(k)}\right)^{-1} A_{2}^{(k)} \\
& \widehat{A}_{1}^{(k+1)}=\widehat{A}_{1}^{(k)}-A_{2}^{(k)}\left(A_{1}^{(k)}\right)^{-1} A_{0}^{(k)} .
\end{aligned}
$$

for $k=1, \ldots$ with $A_{0}^{(1)}=A_{0}, A_{1}^{(1)}=A_{1}, A_{2}^{(1)}=A_{2}, \widehat{A}_{1}^{(1)}=A_{1}$ and until $\left\|A_{0}^{(k)}\right\|_{\infty}<\epsilon$ and $\left\|A_{2}^{(k)}\right\|_{\infty}<\epsilon$.

- Then

$$
X \approx-\left(\widehat{A}_{1}^{(k+1)}\right)^{-1} A_{0}
$$

