
A matrix quadratic equation

Consider the equation (
fy+gygy + fy0gy + fy−

)
ŷ = 0

Two approaches

The generalized Schur decomposition

The cyclic reduction approach
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Generalized Schur decomposition approach

Consider the structural state space representation:[
0 fy+
I 0

] [
I
gy

]
gy ŷ =

[
−fy− −fy0

0 I

] [
I
gy

]
ŷ

or [
0 fy+
I 0

] [
yt − ȳ
yt+1 − ȳ

]
=

[
−fy− −fy0

0 I

] [
yt−1 − ȳ
yt − ȳ

]
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Structural state space representation

Dxt+1 = Ext

with

xt+1 =

[
yt − ȳ
yt+1 − ȳ

]
xt =

[
yt−1 − ȳ
yt − ȳ

]

There are multiple solutions but we want a unique stable one.

Need to discuss eigenvalues of this linear system.

Problem when D is singular.
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Real generalized Schur decomposition

Taking the real generalized Schur decomposition of the pencil < E ,D >:

D = QTZ

E = QSZ

with T , upper triangular, S quasi-upper triangular, Q ′Q = I and Z ′Z = I .
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Generalized eigenvalues

λi solves
λiDxi = Exi

For diagonal blocks on S of dimension 1 x 1:

Tii 6= 0: λi = Sii
Tii

Tii = 0, Sii > 0: λi = +∞
Tii = 0, Sii < 0: λi = −∞
Tii = 0, Sii = 0: λi ∈ C
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A pair of complex eigenvalues

When a diagonal block of matrix S is a 2x2 matrix of the form[
Sii Si ,i+1

Si+1,i Si+1,i+1

]
,

the corresponding block of matrix T is a diagonal matrix,

(Si ,iTi+1,i+1 + Si+1,i+1Ti ,i )
2 < −4Si+1,iSi+1,iTi ,iTi+1,i+1,

there is a pair of conjugate eigenvalues

λi , λi+1 =

SiiTi+1,i+1 + Si+1,i+1Ti,i ±
√

(Si,iTi+1,i+1 − Si+1,i+1Ti,i )
2 + 4Si+1,iSi+1,iTi,iTi+1,i+1

2Ti,iTi+1,i+1
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Applying the decomposition

D

[
I
gy

]
gy ŷ = E

[
I
gy

]
ŷ[

T11 T12

0 T22

] [
Z11 Z12

Z21 Z22

] [
I
gy

]
gy ŷ

=

[
S11 S12
0 S22

] [
Z11 Z12

Z21 Z22

] [
I
gy

]
ŷ
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Selecting the stable trajectory

To exclude explosive trajectories, one imposes

Z21 + Z22gy = 0

gy = −Z−122 Z21

A unique stable trajectory exists if Z22 is non-singular: there are as many
roots larger than one in modulus as there are forward–looking variables in
the model (Blanchard and Kahn condition) and the rank condition is
satisfied.
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An alternative algorithm: Cyclic reduction

Solving
A0 + A1X + A2X

2

Iterate

A
(k+1)
0 = −A(k)

0 (A
(k)
1 )−1A

(k)
0 ,

A
(k+1)
1 = A

(k)
1 − A

(k)
0 (A

(k)
1 )−1A

(k)
2 − A

(k)
2 (A

(k)
1 )−1A

(k)
0 ,

A
(k+1)
2 = −A(k)

2 (A
(k)
1 )−1A

(k)
2 ,

Â
(k+1)
1 = Â

(k)
1 − A

(k)
2 (A

(k)
1 )−1A

(k)
0 .

for k = 1, . . . with A
(1)
0 = A0, A

(1)
1 = A1, A

(1)
2 = A2, Â

(1)
1 = A1 and

until ||A(k)
0 ||∞ < ε and ||A(k)

2 ||∞ < ε.

Then
X ≈ −(Â

(k+1)
1 )−1A0
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