A simple RBC model

Consider the following model of an economy.

- Representative agent preferences

$$
U=\sum_{t=1}^{\infty} \beta^{t-1} E_{t}\left[\ln \left(C_{t}\right)-\frac{L_{t}^{1+\gamma}}{1+\gamma}\right]
$$

The household supplies labor and rents capital to the corporate sector.

- L_{t} is labor services
- β is the discount rate
- $\gamma \in(0, \infty)$ is a labor supply parameter.
- C_{t} is consumption,

RBC Model (continued)

- The household faces the sequence of budget constraints

$$
K_{t}=(1-\delta) K_{t-1}+w_{t} L_{t}+r_{t} K_{t-1}-C_{t}
$$

where

- K_{t} is capital at the end of period
- $\delta \in(0,1)$ is the rate of depreciation
- w_{t} is the real wage,
- r_{t} is the real rental rate
- The production function is given by the expression

$$
Y_{t}=A_{t} K_{t-1}^{\alpha}\left((1+g)^{t} L_{t}\right)^{1-\alpha}
$$

where $g \in(0, \infty)$ is the growth rate of labor embodied technological change and α is a parameter.

RBC Model (continued)

- A_{t} is a technology shock that follows the process

$$
A_{t}=A_{t-1}^{\lambda} \exp \left(e_{t}\right)
$$

where e_{t} is an i.i.d. zero mean normally distributed error with standard deviation σ and $\lambda \in(0,1)$ is a parameter.

The household problem

Lagrangian

$$
\begin{aligned}
L=\max _{C_{t}, L_{t}, K_{t}} \sum_{t=1}^{\infty} \beta^{t-1} E_{t} & {\left[\ln \left(C_{t}\right)-\frac{L_{t}^{1+\gamma}}{1+\gamma}\right.} \\
& \left.-\mu_{t}\left(K_{t}-K_{t-1}(1-\delta)-w_{t} L_{t}-r_{t} K_{t-1}+C_{t}\right)\right]
\end{aligned}
$$

First order conditions

$$
\begin{aligned}
\frac{\partial L}{\partial C_{t}} & =\beta^{t-1}\left(\frac{1}{C_{t}}-\mu_{t}\right)=0 \\
\frac{\partial L}{\partial L_{t}} & =\beta^{t-1}\left(L_{t}^{\gamma}-\mu_{t} w_{t}\right)=0 \\
\frac{\partial L}{\partial K_{t}} & =-\beta^{t-1} \mu_{t}+\beta^{t} E_{t}\left(\mu_{t+1}\left(1-\delta+r_{t+1}\right)\right)=0
\end{aligned}
$$

First order conditions

Eliminating the Lagrange multiplier, one obtains

$$
\begin{aligned}
L_{t}^{\gamma} & =\frac{w_{t}}{C_{t}} \\
\frac{1}{C_{t}} & =\beta E_{t}\left(\frac{1}{C_{t+1}}\left(r_{t+1}+1-\delta\right)\right)
\end{aligned}
$$

The firm problem

$$
\max _{L_{t}, K_{t-1}} A_{t} K_{t-1}^{\alpha}\left((1+g)^{t} L_{t}\right)^{1-\alpha}-r_{t} K_{t-1}-w_{t} L_{t}
$$

First order conditions:

$$
\begin{aligned}
r_{t} & =\alpha A_{t} K_{t-1}^{\alpha-1}\left((1+g)^{t} L_{t}\right)^{1-\alpha} \\
w_{t} & =(1-\alpha) A_{t} K_{t-1}^{\alpha}\left((1+g)^{t}\right)^{1-\alpha} L_{t}^{-\alpha}
\end{aligned}
$$

Goods market equilibrium

$$
K_{t}+C_{t}=A_{t} K_{t-1}^{\alpha}\left((1+g)^{t} L_{t}\right)^{1-\alpha}+(1-\delta) K_{t-1}
$$

Dynamic Equilibrium

$$
\begin{aligned}
\frac{1}{C_{t}} & =\beta E_{t}\left(\frac{1}{C_{t+1}}\left(r_{t+1}+1-\delta\right)\right) \\
L_{t}^{\gamma} & =\frac{w_{t}}{C_{t}} \\
r_{t} & =\alpha A_{t} K_{t-1}^{\alpha-1}\left((1+g)^{t} L_{t}\right)^{1-\alpha} \\
w_{t} & =(1-\alpha) A_{t} K_{t-1}^{\alpha}\left((1+g)^{t}\right)^{1-\alpha} L_{t}^{-\alpha} \\
K_{t}+C_{t} & =A_{t} K_{t-1}^{\alpha}\left((1+g)^{t} L_{t}\right)^{1-\alpha}+(1-\delta) K_{t-1}
\end{aligned}
$$

Existence of a balanced growth path

There must exist a growth rates g_{c} and g_{k} so that

$$
\begin{aligned}
& \left(1+g_{k}\right)^{t} K_{1}+\left(1+g_{c}\right)^{t} C_{1}= \\
& \quad A\left(\frac{\left(1+g_{k}\right)^{t}}{1+g_{k}} K_{0}\right)^{\alpha}\left((1+g)^{t} L_{1}\right)^{1-\alpha}+(1-\delta) \frac{\left(1+g_{k}\right)^{t}}{1+g_{K}} K_{0}
\end{aligned}
$$

for $t=1$. So,

$$
g_{c}=g_{k}=g
$$

and

$$
K_{1}+C_{1}=A\left(\frac{1}{1+g} K_{0}\right)^{\alpha} L_{1}^{1-\alpha}+(1-\delta) \frac{1}{1+g} K_{0}
$$

Stationarized model

Let's define

$$
\begin{aligned}
& \widehat{C}_{t}=C_{t} /(1+g)^{t} \\
& \widehat{K}_{t}=K_{t} /(1+g)^{t} \\
& \widehat{w}_{t}=w_{t} /(1+g)^{t}
\end{aligned}
$$

Stationarized model (continued)

$$
\begin{aligned}
\frac{1}{\widehat{C}_{t}(1+g)^{t}} & =\beta E_{t}\left(\frac{1}{\widehat{C}_{t+1}(1+g)(1+g)^{t}}\left(r_{t+1}+1-\delta\right)\right) \\
L_{t}^{\gamma} & =\frac{\widehat{w}_{t}(1+g)^{t}}{\widehat{C}_{t}(1+g)^{t}} \\
r_{t} & =\alpha A_{t}\left(\widehat{K}_{t-1} \frac{(1+g)^{t}}{1+g}\right)^{\alpha-1}\left((1+g)^{t} L_{t}\right)^{1-\alpha} \\
\widehat{w}_{t}(1+g)^{t} & =(1-\alpha) A_{t}\left(\widehat{K}_{t-1} \frac{(1+g)^{t}}{1+g}\right)^{\alpha}\left((1+g)^{t}\right)^{1-\alpha} L_{t}^{-\alpha} \\
\left(\widehat{K}_{t}+\widehat{C}_{t}\right)(1+g)^{t} & =A_{t}\left(\widehat{K}_{t-1} \frac{(1+g)^{t}}{1+g}\right)^{\alpha}\left((1+g)^{t} L_{t}\right)^{1-\alpha} \\
& +(1-\delta) \widehat{K}_{t-1} \frac{(1+g)^{t}}{1+g}
\end{aligned}
$$

Stationarized model (continued)

$$
\begin{aligned}
\frac{1}{\widehat{C}_{t}} & =\beta E_{t}\left(\frac{1}{\widehat{C}_{t+1}(1+g)}\left(r_{t+1}+1-\delta\right)\right) \\
L_{t}^{\gamma} & =\frac{\widehat{w}_{t}}{\widehat{C}_{t}} \\
r_{t} & =\alpha A_{t}\left(\frac{\widehat{K}_{t-1}}{1+g}\right)^{\alpha-1} L_{t}^{1-\alpha} \\
\widehat{w}_{t} & =(1-\alpha) A_{t}\left(\frac{\widehat{K}_{t-1}}{1+g}\right)^{\alpha} L_{t}^{-\alpha} \\
\widehat{K}_{t}+\widehat{C}_{t} & =A_{t}\left(\frac{\widehat{K}_{t-1}}{1+g}\right)^{\alpha} L_{t}^{1-\alpha}+(1-\delta) \frac{\widehat{K}_{t-1}}{1+g}
\end{aligned}
$$

Steady state

$$
\begin{aligned}
\frac{1}{\widehat{C}} & =\beta\left(\frac{1}{\widehat{C}(1+g)}(r+1-\delta)\right) \\
L^{\gamma} & =\frac{\widehat{w}}{\widehat{C}} \\
r & =\alpha A\left(\frac{\widehat{K}}{1+g}\right)^{\alpha-1} L^{1-\alpha} \\
\widehat{w} & =(1-\alpha) A\left(\frac{\widehat{K}}{1+g}\right)^{\alpha} L^{-\alpha} \\
\widehat{K}+\widehat{C} & =A\left(\frac{\widehat{K}}{1+g}\right)^{\alpha} L^{1-\alpha}+(1-\delta) \frac{\widehat{K}}{1+g}
\end{aligned}
$$

$$
\ln A_{t}=\lambda \ln A+0
$$

Stready state: recursive computation

When $\gamma=0$,

$$
\begin{aligned}
A & =1 \\
r & =\frac{1+g}{\beta}+\delta-1 \\
\widehat{K L} & =(1+g)\left(\frac{r}{\alpha A}\right)^{\frac{1}{\alpha-1}} \\
\widehat{w} & =(1-\alpha) A\left(\frac{\widehat{K L}}{1+g}\right)^{\alpha} \\
\widehat{C} & =\widehat{w} \\
L & =\frac{\widehat{C}}{\widehat{A K L}(1+g)^{1-\alpha}-\delta \widehat{K L}} \\
\widehat{K} & =\widehat{K L} \cdot L
\end{aligned}
$$

